Trends and Properties of 13-Atom Ag−Au Nanoalloys I: Structure and Electronic Properties
نویسندگان
چکیده
We present a systematic study of the structures and the electronic and magnetic properties of 13-atom Ag−Au nanoalloys, using spin-polarized ab initio calculations based on density functional theory. To this end, we use all possible chemical configurations of four different initial symmetries as starting structures: icosahedra, decahedra, cuboctahedra, and the buckled biplanar (BBP) cluster. Mixing is energetically favored; there is no indication of segregation. We find a general tendency to minimize the number of Au−Au bonds. Many of the clusters undergo strong morphology changes. The resulting structures of lowest energy, independent of the starting geometry, are distorted biplanar clusters. The cuboctahedra are a rather stable local minimum against geometry changes following the introduction of the mixing. All the lowest-energy structures have a Kohn− Sham HOMO−LUMO gap of about 0.2 eV and a total spin of 1 μB. Higher total spin values are found for some of the icosahedra and decahedra, but they have an energy much higher than that of the lowest-energy structures of the respective compositions. The quasi-particle gap is about 3.7 eV across the composition range. It does not vary appreciably with the composition and structural details of the clusters.
منابع مشابه
Investigation of structural and electronic properties of small Au n Cu m (n+m≤5) nano-clusters for Oxygen adsorption
In this study, the structures, the IR spectroscopy, and the electronic properties of AunCum (n+m≤5) bimetallic clusters were studied and compared with those of pure gold and copper clusters using the generalized gradient approximation (GGA) and exchange correlation density functional theory (DFT). The study of an O2-AunCum system is important to identify the promotion effects of each of the two...
متن کاملInvestigation of structural and electronic properties of small Au n Cu m (n+m≤5) nano-clusters for Oxygen adsorption
In this study, the structures, the IR spectroscopy, and the electronic properties of AunCum (n+m≤5) bimetallic clusters were studied and compared with those of pure gold and copper clusters using the generalized gradient approximation (GGA) and exchange correlation density functional theory (DFT). The study of an O2-AunCum system is important to identify the promotion effects of each of the two...
متن کاملA density functional theory study of structural, electronic, optical and magnetic properties of small Ag–Cu nanoalloys
The structures and properties of 13-atom silver and copper bimetallic clusters are systematically investigated by density functional theory (DFT) in the theoretical frame of the generalised gradient approximation (GGA) exchange-collection function. Optical absorption, Raman spectra, vibrational spectra, as well as electronic and magnetic properties are calculated by DFT/GGA and semi-core pseudo...
متن کاملElectronic transport in Si and Au monoatomic chains considering strongly correlation effect, a first principle study
We have investigated structure and electronic properties of Au and Si liner chains using the firstprinciplesplane wave pseudopotential method. The transport properties and conductance of these twoliner chains are studied using Landauer approaches based on density functional theory (DFT). Weobtain density of states and band gap using Kohn-Sham and Wannier functions as well as quantumconductivity...
متن کاملFirst-principles study on the electronic structure of Thiophenbithiol (TBT) on Au(100) surface
First principle calculations were performed using Density functional theory within the local spin density approximation (LSDA) to understand the electronic properties of Au(100)+TBT system and compare the results with Au(100) and bulk Au properties. Band structure, the total DOS and charge density for these materials are calculated. We found that the HOMO for Au(100)+TBT becomes broader than Au...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013